Back

Η μαθηματική σταθερά π

Τι είναι ο αριθμός π

Το πρόβλημα του τετραγωνισμού του κύκλου, το οποίο είναι ένα από τα τρία περίφημα άλυτα προβλήματα της αρχαιότητας, οδήγησε στην προσπάθεια εκτίμησης του αριθμού π, ενός από τους πιο διάσημους αριθμούς.

 

Ο αριθμός π ορίζεται ως ο λόγος της περιφέρειας του κύκλου (συμβολίζεται συνήθως με το λατινικό γράμμα L) προς τη διάμετρο του κύκλου (συμβολίζεται συνήθως με δ ή d), ενώ με ακρίβεια οκτώ δεκαδικών ψηφίων είναι ίσος με 3,14159265.

 

Είναι ένας άρρητος αριθμός, κάτι που σημαίνει ότι δεν μπορεί να εκφραστεί ακριβώς ως λόγος δύο ακεραίων. Κατά συνέπεια, η δεκαδική απεικόνιση δεν τελειώνει ποτέ και ποτέ δεν καθίσταται μια μόνιμη και επαναλαμβανόμενη παράσταση. Τα ψηφία φαίνεται να εμφανίζονται με τυχαία σειρά, αν και δεν έχει ανακαλυφθεί ακόμη κάποια απόδειξη για αυτό.

 

Ο π είναι ένας υπερβατικός αριθμός, δηλαδή δεν αποτελεί ρίζα ενός μη-μηδενικού πολυωνύμου με ρητούς συντελεστές. Αυτό έχει σαν συνέπεια ότι είναι αδύνατο να λυθεί το αρχαίο πρόβλημα του τετραγωνισμού του κύκλου με κανόνα και διαβήτη.

Προσπάθεια κατανόησης του π

Για χιλιάδες χρόνια, μαθηματικοί προσπάθησαν να επεκτείνουν την κατανόησή τους πάνω στο π, κάποιες φορές με τον υπολογισμό της τιμής του με υψηλό βαθμό ακρίβειας. Πριν από τον 15ο αιώνα, μαθηματικοί όπως ο Αρχιμήδης και ο Liu Hui χρησιμοποίησαν γεωμετρικές τεχνικές βασιζόμενες σε πολύγωνα, για να υπολογίσουν την αξία του π.

Τον 20ό και 21ο αιώνα, μαθηματικοί και πληροφορικοί ανακάλυψαν νέες προσεγγίσεις που, όταν συνδυάζονται με την αυξημένη υπολογιστική ισχύ, επεκτείνουν τη δεκαδική απεικόνιση του π πάνω από 10 τρισεκατομμύρια (1013) ψηφία (2011).

 

Οι επιστημονικές εφαρμογές δεν απαιτούν γενικά περισσότερα από 40 ψηφία του π και έτσι το πρωταρχικό κίνητρο για αυτούς τους υπολογισμούς είναι η ανθρώπινη επιθυμία να σπάει ρεκόρ. 

Οι πολύπλοκοι υπολογισμοί που εμπλέκονται στον υπολογισμό των ψηφίων του π έχουν χρησιμοποιηθεί για τη δοκιμή υπερυπολογιστών, καθώς και αλγορίθμων πολλαπλασιασμού υψηλής ακρίβειας.

Ιστορικά

Η Μεγάλη Πυραμίδα στην Γκίζα, κατασκευασμένη το 2589–2566 π.Χ., χτίστηκε με περίμετρο περίπου 1760 πήχεις και ύψος περίπου 280 πήχεις, όπου η αναλογία είναι περίπου ίση με . Με βάση αυτή την αναλογία, κάποιοι Αιγυπτιολόγοι κατέληξαν στο συμπέρασμα ότι οι οικοδόμοι της πυραμίδας είχαν γνώση του π και σκόπιμα σχεδίασαν την πυραμίδα για να ενσωματώσουν τις αναλογίες του κύκλου. Άλλοι ισχυρίζονται πως η προτεινόμενη πρόταση του π είναι απλώς μια σύμπτωση, επειδή δεν υπάρχει κάποια απόδειξη ότι οι οικοδόμοι της πυραμίδας γνώριζαν το π, και επειδή οι διαστάσεις της πυραμίδας βασίζονται σε άλλους παράγοντες.

Ο πρώτος καταγεγραμμένος αλγόριθμος για τον αυστηρό υπολογισμό της αξίας του π ήταν μια γεωμετρική προσέγγιση χρησιμοποιώντας πολύγωνα, επεξεργάσθηκε γύρω στο 250 π.Χ. ο Έλληνας μαθηματικός Αρχιμήδης.

Αυτός ο πολυγωνικός αλγόριθμος κυριαρχείται για πάνω από 1,000 χρόνια, και ως εκ τούτου το π μερικές φορές αναφέρεται ως «Σταθερά του Αρχιμήδη». Ο Αρχιμήδης υπολόγισε τα ανώτερα και κατώτερα όρια του π με σχέδιο σε κανονικό εξάγωνο μέσα και έξω από ένα κύκλο και διαδοχικά διπλασιασμού του αριθμού των πλευρών,ώσπου έφτασε στην 96-όψη κανονικού πολυγώνου.

Που συναντάμε τον π

Το π βρίσκεται σε πολλούς τύπους της τριγωνομετρίας και της γεωμετρίας, ειδικά όσον αφορά κύκλους, ελλείψεις ή σφαίρες. Βρίσκεται επίσης και σε διάφορους τύπους από άλλους κλάδους της επιστήμης, όπως η Κοσμολογία, η Θεωρία των αριθμών, η Στατιστική, τα fractals, η θερμοδυναμική, η μηχανική, και ο ηλεκτρομαγνητισμός

Ο καθολικός χαρακτήρας του π τον καθιστά μια από τις πιο ευρέως γνωστές μαθηματικές σταθερές, τόσο εντός όσο και εκτός της επιστημονικής κοινότητας και έχει αποτελέσει θέμα λογοτεχνικών βιβλίων.

Ο αριθμός γιορτάζεται την «ημέρα του π» και ρεκόρ υπολογισμού των ψηφίων του π συχνά αναφέρονται σε τίτλους ειδήσεων. Αρκετοί άνθρωποι προσπάθησαν να απομνημονεύσουν την τιμή του π με όσο το δυνατόν μεγαλύτερη ακρίβεια, οδηγώντας σε ρεκόρ απομνημόνευσης πάνω από 67.000 ψηφία.

Floating Review Template1
4.9/5